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Abstract—Computationally convenient elastic stress—strain relations are given for orthotropic and
transversely isotropic materials in terms of unit vectors that are aligned in the preferred material
directions. Methods are proposed for determining the material symmetry planes from mechanical
and thermal response. The restrictions on the elastic constants that are discussed by Jones (1975)
are specialized to the case of transverse isotropy. [t is shown that the laminated composite structures
with high in-plane stiffness may easily violate these restrictions. The incompressible version of the
stress—strain relations are presented for materials that do not deform under hydrostatic loading.
This version applies to composite structures made with incompressible epoxy matrices and stiff
fibers. For incompressible laminated structures the restrictions on the elastic constants are violated
when the in-plane modulus £; and the out-of-plane modulus E, are governed by E; > 4E,.
Violation of the restrictions may be the cause of the common occurrence of interfaminar shear
failure and edge delamination. In order to avoid excessive load transfer, it may be beneficial to keep
the fiber matrix Young's moduli in the range £ < 20F,.

I INTRODUCTION

The traditional approach for the determination of the stress-strain response of a material
begins with microstructural observations in order to detect the overall structural symmetry
mn the material. Subsequently, the clastic constants of the material are measured along the
nucroscopic symmetry planes. The number of constants that are needed to completely
characterive the clastic properties of the material depends on the number of the obscrved
symmetry planes. Material symmetry axes are known as the “preferred™ directions, or
sometimes as the “principal™ directions. However, we will reserve the term “principal”, for
describing the material planes over which shear stresses vanish under specific stress states.
When the elastic stress-strain responsce is known in the preferred directions, the off-axes
response can be determined from coordinate transformations, sce Lai er ¢/, (1978) or Nye
(1979).

An alternative method for describing the off-axes elastic response is to include unit
vectors that are attached to the preferred material directions in the constitutive (stress—
strain) relationship (Spencer, 1971 ; Boehler, 1979). In this case, the constitutive relationship
still contains the clastic constants that are measured in the preferred directions ; however,
both the stress and the strain are measured in the off-axes directions, and the need for these
quantitics being expressed in the preferred directions is eliminated, which may result in
computational convenience as well as speed. Stress and strain are second order tensorial
quantitics and the directional unit vectors M, N and L are vectors which are first order
tensors. The mathematical form of the relationship between stress, strain and the material
fixed unit vectors M, N and L can be derived from the representation theorems for second
order tensors (Bochler, 1979; Spencer, 1971). These theorems were used by Sutcu and
Krempl (1984) and Sutcu (1985) to arrive at transversely isotropic and orthotropic visco-
plastic stress-strain relations.

An inverse problem arises when we do not know the symmetry plancs and the degree
of anisotropy in the test specimen. Theoretically we can measure up to 21 elastic constants
from the test specimen, however the measured values do not yield direct information
regarding the number of possible symmetry planes. Woven fiber composites that are
reinforced in non-orthogonal directions in three dimensions offer a good example. In this
case, micromechanical models computationally produce 21 overall effective elastic constants
for the structure (Pagano and Tandon, 1988, 1990). But we do not know if these are all
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independent constants or simply the result of an arbitrary rotation from a much simpler
state of anisotropy which requires a lesser number of constants. Sometimes. single crystal
materials are modeled as orthotropic or transversely isotropic materials, although the
actual mechanical response is more complicated. For simple microstructures or weuave
architectures the possible symmetry planes can be determined by intuition. However. a
general method and a related computational algorithm are needed for more complex
structures.

In this paper. we will approximate the material response by transverse isotropy and
orthotropy and then check the error that results from each case. It is desirable to approxi-
mate a given material response with transverse isotropy (if possible). rather than with
orthotropy. Because the former is characterized with only five elastic constants. whereas
the latter requires nine constants. Elasticity solutions for transversely isotropic materials
are accordingly simpler than the orthotropic case. However, transverse isotropy is more
restrictive for accurately modeling the material response.

It is well known (Nye, 1979) that a homogeneous material can have three independent
linear thermal expansion coefficients in three mutually orthogonal directions. Thus, raising
the temperature of a test specimen and measuring the uniform thermal strains offers a
convenient method for determining three mutually orthogonal material directions in which
the material may be orthotropic. The three eigenvalues and the three eigenvectors of the
thermal strain tensor (normalized with respect to the temperature) correspond to the three
independent thermal expansion cocflicients and the three possible preferred directions.
respectively.

The second method for determining three mutually orthogonal directions s to measure
the strain tensor under uniform hydrostatic pressure. The cigenvalues and the cigenvectors
of the resulting strain tensor can be direetly related to the preferred directions and to the
clastic constants, if the material happens to be orthotropic or possesses a simpler class of
anisotropy. Otherwise, these directions do not correspond to the preferred matenial direc-
tions. I is not clear how one can use the information gained from hydrostatic loading in a
useful manner in the case of more complicated anisotropy. It is possible that the thermal
expansion anisotropy is a simpler class than actual structural symmetry, therefore the
method of hydrostatic pressure is more reliable. Alternative methods such as untaxial
loading are needed for incompressible clastic matertals,

Furthermore, in this paper we show that the effective elastic constants ol laminated
composites may violate the restrictions on the elastic constants. These restrictions are given
in Jones (1973) tor orthotropic elastic constants and ensure that the resulting structure can
deform as o continuum under general loading,

2 ORTHOTROPIC STRESS §TRAIN RELATION IN TERMS OF MATERIAL FINED UNIT
VECTORS M, N T

An orthotropic body has three mutually perpendicular planes of material symmetry.
The three mutually perpendicular dircctions, which are the intersections of the symmetry
planes, are called the preferred directions.

In Fig. | we show a material region 2 with a global coordinate system Y'YZ attached
to it. The three mutually orthogonal preferred directions are inclined at an arbitrary
orientation in space. The coordinate system xy=z is attached to the preferred directions. The
region D, in Fig. L is cut from region D, parallel to the preferred directions and mechanically
tested in order to obtain the stress-strain relation in the preferred directions. Our aim is to
obtain the stress-strain relation in the global direction XYZ without any coordinate
transformation. For this purpose, we will use the unit vectors M. N and L in order to
“remember” the preferred directions in our constitutive relationship.

As shown in Fig. 1 the unit vectors M. N and [ are attached to the preferred direction
x, v and z, respectively, and given by

i

l\/‘ n‘{(l‘*"(‘[:['&'ﬂf\k (‘Z\)
N o= Vi+ N+ Nk (Ib)
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X

Fig. 1. The material fixed coordinate system xy= and the unit vectors M. N and L are aligned along

the preferred directions of the material. The material properties are determined from testing the

subregion O, which is cut from region D, parallel to the orthotropy axes. Stress-strain relations

are desired in the global directions YYZ for the region D,. The material may be transversely
isotropic in the yz plane.

E=L{!+L:j+1’a;k. (lC)

where the unit vectors i, j and & are in the global coordinate directions X, Y and Z,
respectively, and the quantitics M, M, and M, arc the direction cosines of the preferred
direction x. The quantities Ny, N:, Ny, Ly, L, and L, are similarly defined.

The transformation of the strain tensor (or any second rank tensor) &, is governed by

by =8 MM+ NN, + e L+ 65N L+ LN)

e (ML + LM)+8(MN+NM), (2)
where the indices § and J range from | to 3. The quantity &, refers to the components of
the strain tensor in the preferred material directions xyz. The strain components in the
global directions X'YZ are denoted by ¢, in (2). The inverse relationship to (2) is given by

e = MMg,,. th=NNg,, &,=LLg,

8’23 = Nququ. 3’13 = MPL‘!EPV’ 6l|2 == MPN‘IEF‘I’ (3)
where summation over repeated indices is implied. The shear strain components &5, &5
and £, in (2) and (3) are one half of their corresponding engineering shear strain com-

ponents 7,3, 713 and y,, respectively. Equations (2) and (3) are useful for determining the
preferred material directions from mechanical test data, as shown later.

2.1, Preferred directions
The stress-strain relations in the preferred directions xy= have the following form
(Lekhnitskii, 1981)

& =e.—~2(T-T) = (6, —v,0,—V..0.)/E, (3a)
£ =e~2(T-T) = (0,~v,0,~V,.06.)/E, (3b)
e.=¢.~2(T-T) =(¢,~v..0,~ v, 0, )/ E. (3¢)
0,. = 2G,:8,.. 0. =2Ck.. 0, =2GC,¢,. (3d)

The total strains are denoted by e, whereas &, excludes thermal strains. The definition of
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the elastic constants £,. £,, E.. G,.. G... G, v,.. v.,. Voo Voo Vol v, AN be obtained from
Jones (1973). Lekhnitskii (1981) or more recently from Buczek (1986). The relationships
between the Poisson’s ratios and the restrictions on the values which the elastic constants
can take are given in Jones (1975).

An orthotropic material has three independent linear thermal expansion coefficients
.. 2, and . in the three principal directions. The rectangular prism D, in Fig. | which is
aligned in the preferred directions remains rectangular upon temperature variation.
However. the region D, in the global directions X YZ deforms in shear as well because of
the off-axis thermal strains.

The relationships in (3a)-(3c) can be inverted to obtain the stresses g, in terms of the
mechanical strains g

6. =Ce,+Ce,.+Che. (4a)
0, = C26,+Coat + Crae, (4b)
.= (e, +Ca, +Chiee. (4¢)

The elastic constants C,, are related to the enginecring elastic constants £,. £, and so forth
in Jones (1975).

2.2, Incompressible orthotropic stress strain relationship

An clasticity theary was developed for fiber composites by Mulhern e al. (1967),
Everstine and Pipkin (1973) and Spencer (1974) amonyg others, in which the fibers were
approximated by rigid inextensible cords and the matrix was assumed to be incompressible.
For this reason, it is worthwhile to give the incompressible versions of the orthotropic
stress-strain relationships in (3a) (4e). 1t can be shown that the trace of the strain tensor
&, vanishes identically when the Poisson’s ratios are given by

v, = |+ EJE I (5a)
Q. =+ EJE ~EJE, (5b)
v, = L+ L JE ~EJE.. (5¢)

Thus, an incompressible elastic material possesses six constants, rather than nine. The
resulting stress-strain law is again governed by (3a) -(3¢) with the Poisson’s ratios calculated
from (5a)-(5¢).

For the incompressible deformations, the inverse of (3a) -(3¢) docs not exist, because
the hydrostatic stress cannot cause deformation. In physical terms, this may be interpreted
as an indication that the material prefers failing by fracture under hydrostatic loading rather
than deforming as a continuum.

There is an inverse relationship between the stresses and the strains if we subtract the
hydrostatic stress from the stress tensor o, The resulting stress denoted by z, is called the
deviatoric stress,
=0, —0,0,/3. (6)

7,

where the unity tensor, Kronecker delta 0, 1s defined by

_ 1 ifi=,
9, = L.
0 otherwise

Using (5a)-(6) in (3a)-(3c) and (4a)-(4¢) we obtain the following deviatoric orthotropic
stress-strain relation :
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T, = C1181+C128y+cn{35: (73)
1, = C4ye,+ Cie, + Clse: (7b)
1. C H 38'¢ + C%JE)' + C';;E:. (?C)

The deviatoric elastic constants in (7a)~(7c) are given by

CY, = 4E,JE,+3EJE.~2)D (8a)

CY, = (4E,JE.—2E JE,+3)D (8b)

C4y = (4E JE, = 2E JE.+ 4D (8¢)

CY; = (E./E,+E.JE.—5)D (8d)

C4y = (E,JE.—SE.JE,+1)D (8e)

CY;, = (EJE,~5SE.JE.+1)D (8F)

D = (2E.[9)/[4E/E, —(E.JE,— E./E.+1)°]. (8g)

The shear stresses t,., T, and 7, are unaffected and are still governed by (3d).

2.3. Restrictions on the elastic constants

The restrictions on the orthotropic elastic constants are given in Jones (1975). Applying
the same requirements as in Jones (1975), we derive the following equivalent restrictions
for the incompressible case:

D20 (9a)
(I +E/E ~EJE)* <4E[E, (9b)
(1+E£/E . ~E.JE)* <4E.JE, (9¢)
(1 +E./[E,~E.|E)’ <AE.[E,. (9d)

The four constraint equations in (92)-(9d) are not all independent. It can be shown that
the restrictions in (9a)-(9d) are satisfied by

—VEIE)Y S EJE. < (1+E/E). (10)

The restriction in (10) may have important consequences for laminated fiber-reinforced
composites, especially those made of high modulus fibers in nearly incompressible rubber-
like matrices. Let us imagine that the x-axis is aligned perpendicular to the plane of the
laminate. Then, the Young's modulus £, of the resulting composite is essentially the same
as that of the matrix, whereas the in-plane moduli E, and E, have high values because of
the fibers. This structural arrangement can easily violate the restriction in (10} and thus
restrict certain classes of deformations in the composite.

It should be noted that the above restriction in (10) may have some implications for
incompressible plastic deformations of metals as well. When the effective plastic moduli do
not satisfy the restriction in (10) volume preserving plastic flow may become restricted,
which may lead to brittle fracture or damage.

2.4. Arbitrary directions

The tensorial representation theorems (Spencer, 1971) are used to derive the stress—
strain relation in the global directions X'YZ (Fig. 1). Mathematical representations for one
tensor ¢, and three unit vectors M,, N, and L, are used by Boehler (1979) in order to
derive transversely isotropic and orthotropic constitutive relations. We derive an equivalent
orthotropic relation that has some advantage in representing the shear terms in comparison
with Boehler (1979), using the same mathematical techniques [see Sutcu (1985)). The
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accuracy of the presented expression can be checked easily, using coordinate trans-
formations described in (2) and (3);
6, =m e, (Cym;+Cn;+C, 3lig) + 1By (Cromy+ Caan, + Casly)
S o (o smy+Casny, +Cy3l ) +2C,, (nplig + 1Ly )Eng

+2Css(mydy+mpl)e, + 2Ceq(myn, +my,n,)e,.  (11)

where the tensors m,,. n,; and /; are calculated from

m,, = MM, {(12a}
ny = N,N, (12b)
by = L,L, (12¢)

The quantities m,,, n,,. [, will be called geometric tensors. The elastic constants C, in (11)
were defined in (da)~(4c). The stresses o, and the strains g, in (11) are in the globual directions
XYZ (Fig. 1). The stresses o}; and the strains ¢, in the preferred directions xyz can be
obtained using the tensorial transformation expressions in (3). A fourth order tensorial
representation related to (11) is defined in the appendix.
For incompressible materials, the deviatoric form of the stress-strain relation in (11)
is obtained by replacing
a

. with 1, and

CiinCian Ciy, €22, €y Gy with ’f{sc"!’bc“f}-(*%b(“ih . (13)
The inverse of (1) s

&y = My, 0, (S iy + S, + 8030 +1,,0,,(S1am, 4+ Son, +8,51,)

PYP

+ [;mdpq(sl 3"’{] + Sl’ 1”1;’ + S.‘][ij) + (S-N/z)(ntplm + nipllq)gpq

+(Sss/ 20 mpliy 4+ m 1 )0, + (See/ 20 (mun, +m,n )0, (14)

The elastic constants Sy, Sy, Si3. 521, Sas...., S in (14) are defined in terms of the
engineering constants E,, E,, and so forth in Jones (1975) (see 2.23). The incompressible
version of (14) is obtained by using the incompressible values for the Poisson's ratio v,,,
Vsr, V. provided by (5a)-(5c).

2.5. Orthotropic thermal expansion coefficients in arbitrary directions

An orthotropic material may have three unequal thermal expansion coefficients ., «,,
a, in the preferred directions, as discussed in Section 2.1. If these values are unequal, then
the block D, in Fig. | may undergo shear deformation as a result of temperature change,
because it is aligned in the off-axis directions of the material. The edges of the deformed
block that were initially aligned along the X and Y axes now make an angle other than =/2
as a result of the temperature change. The difference between the new angle and n/2 for
one degree temperature change, when expressed in radians, defines the shear thermal
expansion cocfficient 2x,,. Similarly, we can define 2%, and 2x,; in the global XZ and YZ
directions, respectively. Including the three normal thermal expansion coefficients «,, .,
and a3, in the global X, Y and Z directions, respectively, there are six thermal expansion
coefficients. The factor two is introduced in the shear terms because these six constants
form the components of a second order tensor ;.. Thus, the relationship between the six
off-axis thermal expansions o, ;3. %33, %23, @3, &2 and the three principal thermal
expansion coeflicients a.. a,. «. is governed by the tensorial transformation law in (2)
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2, =t MM +2, NN, +2.LL, (15)
or explicitly

A= IV‘A&I%+1',-N%+1;L} (1621)
2ay = 2 Mi+2,Ni+a.L3 (16b)
%y = x, Mi+a,Ni+a.Lj (16¢)
X2z :1‘1‘[:/‘13"'1_,1\/31\,_\+1_~L:L3 (l6d)
2 =2 M M;+2 N Ny+a.L,L, (16¢)
llg=IYA/IIA[:+1".N|Nz+d:L|L:. (léf)

The inverse relationship can be easily obtained using (3).

3. TRANSVERSE I[SOTROPY

If at every point of a material there is one plane in which the properties are equal in
all directions, then the material is termed transversely isotropic. A transversely isotropic
material is characterized with only one preferred direction. The transversely isotropic stress—
strain relationship in arbitrary directions is developed in a similar manner to the orthotropic
case. We derive the stress-strain relation for region D in Fig. | with built-in coordinate
transtormations. The material propertics are obtained from testing region D, which is
aligned along the preferred direction. The material is isotropic in the yz-plane in Fig. |.
Similar to the unit vectors M. N, L in (la)-(lc), which are attached to the principal
directions of orthotropy, we attach a single unit vector M along the axis of anisotropy in
the v-direction. This unit vector is used to “‘remember™ the preferred direction of the
transverse isolropy.

The other two unit vectors N and L given by (1b) and (I¢) can be chosen arbitrarily
beciuse these two directions lic in the plane of isatropy. For convenience, we choose one
of the unit vectors Nin the global YZ planc in Fig. 1. The third unit vector L is obtained
by taking the vectorial cross product of M and N

N = (M,j—M,k)|Q
L=(-Q%+MM,j+MMk)Q
Q=M3i+M}H" )

In the special case when the principal direction x is aligned in the global X direction, (i.e.
M, = My = 0), then the vectors N and [ are givenby N =/, L = k.

The stress-strain relationship given below is the linear part of the more general
expression given by Bochler (1979) :

0, = 0,(Ciew + Camny8,,) + 11, (Catin + C3smye,,) + Catyy+ Cs (e, +me,).  (18)

In comparison with the nine elastic constants of an orthotropic material, a transverscly
isotropic material possesses five constants. Incompressible transversely isotropic materials
are characterized by three elastic constants.

The geometric tensor m,, is constructed using the components of the preferred dircction
vector M, as given by (12a). The stress ¢,; and the mechanical strain g, in (18) are defined
in the global coordinate system X'YZ (Fig. 1). The stresses ¢, and the strains ¢, in the
preferred directions can be obtained using the coordinate transformation defined in (3).
The newly defined elastic constants C,, C,, Cy, C,, Cs in (18) are related to the more
familiar engineering clastic constants as follows:
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Ci=k-G =C(Cyy (19a)
Co= vy -k+G = Ci.~Coy (19b)
Ci= ExH{vy=1Vk=4G\+G; = C), + (.2 =2C,, —4C., {19¢)
Ci=2Gy = Cy;~Cy; (19d}
Ci=20,=2G; =2C,~Css+Css. {19e)

The definition of the elastic constants on the right hand side of eqns (19a)-(19¢) is given
in the Appendix.
The inverse of (18) is given by
&, = ‘su(S!G‘kk +S.‘.""pq‘7pq} +"1i1(526i'(k +SE"1Q¢U;W)‘*’SJG,i‘i"Sg(fi{,pGp,‘f"?l 7, ). {2())

wem

where the newly defined elastic constants S, S». S.. S, S5 are given by

S\ = —vi/Er = Ss, (212
Sy=vi/Er—valEn = 51;- 51 (21b)
Si= VELHVE +2v Ex~1/Gy = 511+ 5, -28,:~ 8. (2lc)
Si=(+vVE =1/Q2G) = S5,,-Sy, (21d)
Se= (0~ 1G)2 = §500/2=85::+ 5. (2le)

The definition of the commonly used clastic constants 8. S.,, and so forth is given in
Christensen (1979).
The notation m (19) and (21) is chosen to correspond to

Eyx=F, =8 =F, v,=v, =v.

Ve =y, =y Ay o= A, Ap =L

[

Gy=G, =G

PEd

vy
in comparison with the orthotropic case.

3.1 Restrictiony on the elustic constants und the incompressible Poivson’s ratios

The restrictions on the values that the elastic constants can take are obtained in a
similar way to Jones (1975). These restrictions basically ensure that applied load produces
deformation in the load direction, and the elastic stored energy in the material is positive
for all possible deformations. Specializing the expressions in Jones (1973) for transverse
isotropy, we obtain

Ex Ev, Gy, Gy >0 23
— 1 < vy <1 (23b)
vi € (L=v))ESJQED. (23¢)

When the Poisson’s ratios are governed by the following refations, the material behavior is
incompressible

vy = ]/2 (24(1)

1 —EL/(2EL). (24b)

]

¥r

By inserting the incompressible value of vy from (24b) into the lower limit in (23b), we
arrive at the conclusion that incompressible deformations cannot occur in transversely
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isotropic materials where the axial direction x is softer than the transverse plane y- and the
ratio of the moduli is such that the following condition is violated :

Er <4E,. (25)

This restriction is the transversely isotropic version of the orthotropic restriction given by
(10).

3.2. Incompressible stress—strain relationship

The incompressible version of the transversely isotropic stress—strain law in (20) is
obtained by calculating S, S:. S;, Si. S5 from (21a)-(21e) while replacing the Poisson’s
ratios v4 and vy on the right-hand side with the incompressible values provided by (24a) and
(24b). The resulting expression does not produce deformation under hydrostatic loading.

The incompressible version of the stress—strain law in (18) can only be defined between
the deviatoric stress t; defined in (6) and the strain ¢,. The shear components of the
deviatoric stress t,, are identical to the corresponding stress components g;;.

T, = 8,(Clew + Clmyye,,) +m (Clew + Chmy,e,,) + Cle, + Co(my,e,, +myE,).
(26)

The elastic constants CY, i = 1, 5 are not all independent and are expressed in terms of the
three independent elastic constants E,, G, and G (or £;) as follows:

CY{ = Er/9-Gy (27a)
Cl=Gi—E\3 (27b)
Cq = Ex+G;—4G, (27¢)
Y =2Gy = 2E( /(4= E/EL) (27d)
C% =2G,—2G,. (27¢)

The deviatoric relationship in (26) is similar to (18) except the constants C; in (19a) -(19¢)
are replaced with CY in (27a)~(27¢). The bulk strain g, in (26) is zero for incompressible
deformations. This term is retained in order to maintain the symmetry of the fourth order
tensor of elastic constants. The tensorial relationship in (26) is given in matrix form in the
Appendix. [t should be noted that the in-plane shear modulus G in (27d) becomes negative
when the restriction in (25) is violated.

3.3. Thermal expansion coefficients in arbitrary directions

Similar to the orthotropic case discussed in Section 2.5, a transversely isotropic material
may also deform in shear in the off-axis directions under temperature variation. The six
off-axis thermal expansion coeflicients a,,, a3, o33, #23, 0,3, %> are related to the two
principal thermal expansion coeflicients o, and oy (see (22)),

2, = 20, + (2y —or) M, M, (28)
or explicitly
%y = ar+ Mi(an —ar) (29a)
Ay = otp+ Mi(xa —ay) (29b)
ayy = 2y + Mi(an —ar) (29%)
Aay = A‘!:A’[}(I,\ —aT) (29d)

ay = M M;y(x5 —ar) (29¢)
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2= M M(2a—21). (29¢)

The subseripts 1203 in (29a)-(29F) indicate the global coordinate axes X, }. Z respectively,
defined in the off-axis directions (Fig. 1).

4, DETERMINATION OF THE PREFERRED MATERIAL DIRECTIONS

Conceptual or actual experiments can be devised in order to determine the material
ssmmetry planes. The unknowns are the direction cosines of the material-fixed unit vectors
M. N and L which were used in the previous sections in order to “remember the preferred
dircctions. Perhaps, the casiest test is to subject the material with unknown properties to a
temperature change. Shear distortion upon uniform heating is a good indication that the
material is anisotropic and that the test specimen is aligned in the off-axes directions. Shear
deformations under uniaxial or biaxial normal loading can be interpreted in a similar
manner. As discussed previously, applying hydrostatic pressure offers a convenient method
for determining the material symmetry planes, if the material is orthotropic,

AL Temperature chunge in an orthotropic material

The orthotropic block Dy in Fig. 1. upon heating, undergoes length changes along its
cdges and angle changes between the edges, so that the corners are no longer at right angles.
The pereentage length changes along the three mutually orthogonal edges are given by the
normal strain components &4, #,> and &, The angle changes, when expressed in radians
and divided by 2, are represented by the shear strain compenents g5, 2 and ;.. The six
strain components are divided by the temperature variation AT, in order to arrive at the
siy thermal expansion cocflicionts, 2. %00 X, Zow, Xpv. 2ga.

The relutionship between the six off-axes thermal expansion cocflicients x, and the
three preferred thermal expansion coetlicients z,, x, and 2, is given in (13) (16f). In
mathematical terms, the determination of the preferred directions is an cigenvalue problem,
which can be demonstrated casily by taking the inner product of %, in (13) with the unit

vector M,

o, M, =2.M, (30a)
1, N, = 2N, (30b)
a,l, =a.L, {30¢)

using the orthogonality conditions on the unit vectors. Thus, the three preferred thermal
expansion coeflicients %, .. %, are the eigenvalues of the thermal expansion tensor %,,, and
the nine direction cosines M, M, My, N\, N., Ny, L,, L, L, are the direction cosines of
the three mutually orthogonal eigenvectors of %;,. If two of the eigenvalues are equal to one
another, then the material is transversely isotropic as far as the thermal expansion behavior
ts considered. The actual mechanical anisotropy may be more complicated. The method of
hydrostatic pressure provides a more reliable method and is discussed next.

4.2 Hydrostatic pressure

If the material is orthotropic and compressible, then the preferred directions of the
material coincide with the cigenvectors of the strain tensor ¢,. which is produced under
hydrostatic pressure. a,, = pd,,. The term p denotes the hydrostatic pressure, and d,, is the
Kronecker delta defined atter (6). The strain response ¢, is calculated from (14),

[ ’/? w A\[,{‘{](S‘l § + aS‘i M +;S‘1 ;) + f\”,:\':,(».g:: + S' 2 + .S:_x) + ["‘I‘i(‘s‘ 3 + S.} 1 + S:}}' (3 ‘ )
Furthermore, the cigenvalues of the strain tensor ¢, provide some information about the

clastic constants. The inner product of the strain tensor &, in (31) with the unit vectors M,
N, and L, produces the cigenvalues in terms of the elastic constants:
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e, M= M(S, +S51:+S)p =4 M, {32a)
e N; = NS+ 51+ 8:9p = 72N, (32b)
gL, = L(S3;3+ S+ S:)p = 45L.. (32¢)

The eigenvalues are denoted by 4. 4, and .. If two of the eigenvalues are equal then the
material may be transversely isotropic. Note that the shear moduli do not appear in (32a)-
(32¢). It is also worthwhile to mention that a mathematical analogy exists between the
method of hydrostatic pressure and the method of uniform heating. This analogy can be
seen by comparing the eigenvalues predicted in (30a)-(30c) and (32a)—-(32¢).

Determining the eigenvectors of the strain tensor under hvdrostatic pressure, con-
veniently filters out most of the unknown elastic constants so that the preferred directions
are derived easily. Alternatively, one can use direct algebraic methods by considering six
independent equations that are derived from (14) under hydrostatic pressure. The algebraic
solutions for orthotropy are quite lengthy because of the non-linear coupling of the unknown
terms. However, the particular equations that are derived for transverse isotropy from (20)
are manageable.

Let us assume that six strain components have been measured under hydrostatic
pressure in a transversely isotropic material and we wish to determine the three direction
cosines W,. M, and M, of the preferred direction from this information. Setting 7, = pd,
in the transversely isotropic stress—strain law in (20) shows that there are five unknowns —
the three direction cosines M, M. A, and two combination elastic constants (35, + 5, +5))
and (3S5,+5,+25;). Six components of the strains in (20) and the unit magnitude
condition on the unit vector M provide seven equations for the five unknowns, Thus, two
of the measured strain components under hydrostatic loading are dependent on the other
measured strain components, if the material is truly transversely isotropic:

£y = ga8n(ey, "lln)/[(‘ff: —&3y) (33)
hi b hl hd ¥
f:fz(ﬂn - x)»~ —~ (a7 —&33)°

(£33 ~&, |)(13§: —z:_fx}

{33b)

trr = &y

With these constraints, the number of equations is reduced to the number of the unknowns.
Equations (33a) and (33b) make it possible to check for transverse isotropy under hydro-
static pressure without the need to solve an eigenvatue problem.

Let us assume that we wish to determine an approximate plance of transverse isotropy
for 1 material that does not satisfy (33a) and (33b). Since the actual material behavior is
not transversely isotropic, the two equations in (33) represent the error in the approxi-
mation. We must ensure that the stiffest and the softest directions are included in the
analysis. We may underestimate the real anisotropy if we ignore cither the stillest or the
softest material directions and consider the intermediate or “in-between™ stift directions.
For this purpose, it is advantageous to choose the global X YZ coordinate system such that
the X and Z axes are aligned in the stiff and in the soft directions of the material respectively.
The stiff and the soft directions of a material can be determined by applying hydrostatic
pressure and measuring strains. The maximum and minimum normal strains correspond
to the soft and the stiff directions respectively.

The global coordinate system XYZ in Fig. | is chosen so that the normal strain
components are ordered in the following manner: |&,,| < |&1.] < |g;3] under hydrostatic
pressure. This choice ensures that the stiff material direction lies close to the X direction.
whereas the more compliant direction is close to the Z direction. When the stiff direction
lies in the plane of isotropy, the shear strain components are ordered such that
le2s] > lg13l > |e;2] under hydrostatic loading. On the other hand, if the out-of-plane
direction is stiffer, then the shear strains are governed by |e.3] < |1} < |&,:]. provided that
the material is indeed transversely isotropic. If the shear strains under hydrostatic loading
are not ordered as such, then the material has a more complicated symmetry class than
transverse isotropy. In order to emphasize the stiff and the soft directions and ignore the
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intermediary directions. the two extra equations that contain &.. and ¢, on the left hand
side in (20) will be dropped in the approximation.

4.3, Uniaxial loading

We introduce the method of the uniaxial loading primarily for materials that do not
deform under hydrostatic stress. The method will be discussed for compressible materials.
and subsequently will be specialized for incompressible materials. Qur purpose is to deter-
mine the approximate symmetry planes in a given material so that the stress—strain response
is approximated by orthotropy or transverse isotropy. The global coordinate system XYZ
in Fig. is chosen such that the stift material direction lies close to the X direction. whereas
the compliant direction is close to the Z direction. This choice is accomplished by applying
unit uniaxial stress in three mutually orthogonal directions and subsequently labeling the
directions with X, ¥, Z such that the normal strain components in the applied load directions
are ordered n the following manner: [6,,! < less] < el

.31 Orthotropy. Three uniaxial loadings are needed to completely characterize the
state of orthotropy ina material. These three uniaxial loadings can be in arbitrary directions
however, they cannot lic in a single plane. The uniaxial loadings in the proposed method
arcalwayschosenin the global X, Y and Z directions. From these three tests, 15 independent
strain components are measured. Using these measured values, 15 equations are generated
from the orthotropic stress -strain relation in (14) for solving the following 18 unknowns:

MM MO NN ONULG L L
S8 S S S S S Sl S (34

Additional six equations are provided by the conditions on the unit vectors M, N and
and given below

M{i+MI+M=N{+Ni+ N = Li+Li+ L] =
MN + M N+ M N =0
ML+ ML+ MLy =0
NiLi+NyLy+ Ny = 0. (35)

Thus, the 18 unknowns in (34) are overly constrained by 21 equations that result from three
uniaxial loadings. 11 the material behavior is orthotropic, then the extra three equations are
identically satisfied ; otherwise, they represent error. In order to ensure that the error occurs
in the intermediary direction, rather than in the stiff or the soft directions, we choose the
following three equations to represent the error; the equations that correspond to (i) the
normal strain &,, in (14) when the untaxial foad 1s applied in the direction Y, {11} the shear
strain £,y i (14) when the uniaxial load s applied in the direction X and (i) the shear
strain &y in (14) when the untaxial load is applied in the direction 2. Dropping these three
cquations, the number of unknowns matches the number of equations, and a solution s
possible.

It is possible that the material symmetry class is simpler than orthotropy. In this case
the solution of the above cquations is not unique and the extra equations that represent
error are satistied identically, If this is the case, then one should investigate the possibility
of transverse isotropy.

The above-mentioned method is applicable to incompressible materials as well. Incom-
pressibility can be detected by summing the three measured normal strain components
from cach uniaxial test. If all three summations produce nearly zero, then the material is
incompressible. Since the normal strain components are related, the three uniaxial tests
produce 12 rather than 15 independent equations for incompressible materials. The number
of unknown elastic constants is six rather than nine. Thus. we again have three extra
cquations that represent crror.
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4.3.2. Transterse isotropy. Two uniaxial loadings are needed to completely characterize
a transversely isotropic material. They can be in arbitrary directions so long as they do not
coincide. The uniaxial loadings in this paper are always chosen in the stiff and in the soft
X and Z directions. From these two tests, 11 independent strain components are measured.
Using these measured values, 11 equations are generated from the transversely isotropic
stress—strain relation in {(20)—(21e) for solving the following seven unknowns:

E,\.ET. GA‘GT~VA" A’].AI:. {36)

The third component M ; of the unit vector M is related to M and M in (35). Unlike the
hydrostatic loading. all five elastic constants are included in the stress-strain relation (20).
The seven unknowns in (36) are overly constrained by 11 equations. If the material behavior
is truly transversely isotropic, then the extra four equations are identically satisfied ; other-
wise, they represent error. In order to ensure that the error occurs in the intermediary
direction. rather than in the stiff or the soft directions, we disregard the four equations that
contain &, and ¢, on the left hand side in (20). Dropping these four equations, the number
of seven unknowns matches the number of seven equations, and a solution is possible.

If the solution to the equations in (20) is not unique, then the material is isotropic.
The above-mentioned method is applicable to incompressible materials as well. For incom-
pressible materials, two uniaxial tests produce nine rather than [1 independent equations,
and the number of unknown elastic constants is three rather than five. Thus, we again have
four extra equations that represent error.,

5. DISCUSSION AND SUMMARY

Llastic stress-strain relations in arbitrary material directions are presented for trans-
versely isotropic and orthotropic matertals. The relations given by (11}, (14), (15), (18) and
(20} are expressed in teems of the elastic constants that are measured along the preferred
material directions and three unit vectors M, N and L in order to “remember™ the preferred
directions. The need for rotating the stress and the strain tensors into the preferred directions
is climinated because the preferred directions ire built into the stress-strain relations. In
the case of transverse isotropy we only need to “remember™ the direction perpendicular to
the planc of wsotropy.

Incorporating material-attached unit vectors into the stress—strain relationship makes it
possible to use tensor algebra for determining the symmetry properties from the mechanical
response of the material under load. The unknowns are simply the direction cosines of the
unit material vectors. We can than systematically reduce the 21 elastic constants to simpler
symmetry subclasses shown on pages 296-301 in Nye (1979). A computational algorithm
is needed for this purpose ; however, this will be done elsewhere,

The special case when the material is incompressible is treated by providing deviatoric
orthotropic and transversely isotropic stress-strain relations (see (7a)-(8g), (13) and (26)-
(27¢)). The deviatoric stress excludes the hydrostatic pressure in the material. The strains
are such that the material volume remains unchanged during deformation. The deviatoric
constitutive relationships are useful for certain composite materials which are treated as
incompressible matrices reinforced with inextensible cords [see Mulhern er «f. (1967);
Everstine and Pipkin (1973); Spencer {1974)]. It should be noted that an incompressible
material can have 1 maximum of 15 anisotropic elastic constants in comparison with the
21 clastic constants of a general anisotropic body.

The restrictions on the orthotropic elastic constants in Jones (1975) have been extended
to incompressible deformations and to the case of transverse isotropy. When the elastic
constants violate these restrictions, an inhomogeneous material cannot effectively deform
as an equivalent homogencous medium under all loading situations. Some deformation
modcs will be constrained, and large stress concentrations may result at the interface of the
constituents when a restricted class of deformation is activated by the applied load. This
will causc localized deformation, such as plastic flow, damage or fracture, in order to
accommodate the applied load. An example of this phenomena, is the common occurrence
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of interlaminar shear failure in laminated composites. The restrictions given by (10) and
(23) for incompressible materials become important for laminated composite structures
where the out-of-plane effective elastic modulus is smaller than the in-plane stiffness. Such
will be the case when the fibers are much stiffer than the matrix. The general restrictions
given by (23b)-{23c) for transverse isotropy. and for orthotropy by Jones (1975). are
probably commonly violated for these laminated composites. It can be shown that the
restricted class of deformations for laminated composites include the in-plane shear and
the out-of-plane normal loading. Perhaps. one reason for the success of the laminated
composites 15 the fact that the edges of the composite are usually constrained in such a
manner as to produce even strain distribution in all layers and thus preventing edge
delamination and interlaminar shear failure. Another reason may be the ability of the
matrix to deform pon-linearly. )

Similar arguments can be made about the elastic energy content of the body. When
the restrictions on the elastic constants are violated. the structure cannot contain clustic
energy as an equivalent homogeneous medium. All of the energy input into the material is
consumed by increasing the stress concentrations at singular locations rather than by
volume deformation in the body.

Laminated structures using brittle fiber and matrix combinations may present inter-
esting challenges in terms of preventing interfaminar shear failure. Let us assume that enough
number symmetric lavups are stacked so that the in-plane response is nearly isotropic.
Equation (25) indicates that edge delamination or interlaminar shear failure will be a
problem if the composite is nearly incompressible and the matrix and the fiber Young's
modult are such that £y > 4F,. Using Christensen’s effective shear modutus for the com-
posite, it can he shown that £y > 4F, when the fiber and matrix Young's modult are
governed by £y > 3348, £, > 203, or E; > 179F, tor the matrix Poisson's ratios of
0.49, 0.45 and 0 respectively. The fiber volumie fraction s taken to be 0,45, The above values
are caleulated by assuming perfect interface bonding and fiber spucing. Processing flaws
and uneven fiber spacing may reduce the out-of-plane modulus £, considerably lower
than the caleatated values, Experimental measurements of the out-of-plane modulus for
faminated composites is needed. For woven fiber composites, we suggest adding fibers in
the soft composite direction until the eflective Young’s moduli of the resulting composite
satisfies the orthotropic restriction in (10), although this relationship was dertved tor
incompressible deformations.

Uniform heating (without microstructural change) and hydrostatic loading provide
considerable information about the symmetry planes of a material. in both cases, the
cigenvectors of the resulting strain tensor directly coincide with the preferred directions off
the material. The method of hydrostatic stress is applicable only if the material is com-
pressible. For incompressible materials the method of uniform heating can be used;
however, we can determine only thermal expansion anisotropy from this method, Thermal
expansion anisotropy is generilly a simpler symmetry class than the actuad mechanical
anisotropy. The direction cosines M,. N, and L, are treated as unknowns tor the deter-
mination of the approximate symmetry planes in the material. When the materialis approxi-
mated as an orthotropic medium, three preferred directions are caleulated. whereas only
one preferred direction is caleulated in order to approximate the material behavior as
transversely 1sotropic.

Approximate material symmetry planes can also be determined from uniaxial loadings.
Three uniaxial loadings are needed for characterizing the state of orthotropy. whereas two
are needed for transverse isotropy. Approximations are carried out so as to include the
stiffest and the softest material directions.

The stiffest material direction in uniaxial loading may not coincide with the stiffest
direction under hydrostatic pressure for some classes of laminated or woven fiber composites
and in some single crystal materials. In structural applications, it is desirable to choose the
main load bearing direction in the stiff direction obtained under hydrostatic loading in
order to minimize shear distortions. Thermal shear distortions are also minimized with
the above choice of the loading directions. because the principal strain directions under
hydrostatic loading coincide with the principal thermal strain directions.
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APPENDIX
Al Representation of the elastic fourth order tensor for arthotropic materials
The orthotropic clastic constitutive relationship in (1) can be expressed in terms of a fourth order tensor,

0, = Ciplpy (AD)

The fourth order elastic tensor C,,,, is expressed in terms of the orthotropic elustic constants Cy,. C,, and so
forth and the geometric tensors m,, n, and [, that are defined in (12a)-(12¢) as follows:

Copg = M (Coim, + Ciany + C il y+ 1, (Cramy + Coany + Cold Y+ L (Crumy + Coyn, +Cyyl,)
+2C i h g+ 0,0y +2C (L, +m Y +2C o (mn, +m,n). (A2)

ol
A similar fourth order tensor §,,, can be defined for the inverse relationship (14). The factor 2 in the last three
terms in (A2) is replaced by (1/2) for this purpose,

A2. Transversely isotropic stress-strain relation in the preferred direction

The transversely isotropic constitutive relationship is commonly given in the _preferred directions of the
material {sce, for example, Christensen (1979)]. When the prcft.rred direction vector M is aligned along the global
Xaxis.ie My = |, M, = M, =0, the gencral relationship given in {18) reduces to

G = Cpe, +Chae, +6,) (A3a)
g, =Ce +Che +Che, (A3b)
o, = Ce,+Chye, +Cyie, (Alc)
0, = (Cy;~Cyle,, = 2Gre,, (A3d)
Gy = 208, (Ale)
Ou = 208, (A3f)

The five clastic constants C,,, etc., (Christensen, 1979) ace related to the engineering constants [see Lekhnitskii
(1981); Hashin (1979)]:

Cy=E+dkvi, C,=2v.k
ng = k+GT. C:] = k_GT' Cﬁg = GA' (A4)

The transverse bulk modulus & is given by [see Hashin (1979)]:

SAS 29:4-H
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2k = Erj(1 —ve —2viE/EL).
A3. The matrix form of the incompressible transversely isotropic relationship in (26)
The stress—strain relations are commonly expressed in matrix form [see Jones (1975) or Christensen (1979)].

For this purpose the components of stress and strain are stored in 6 x 1 vectors as follows:

Ty =Ty, T3=Ty, T3=1y, Tq=1I;, T3=1T;; T4=1

E) =&, E3 = €33, £y = £33, €4 =265, &5 = 2,5 Eg = 26 (A3)

The matrix form for (26) is given in the preferred directions only. For this purpose, we set m,, = 1, and all other
m,, = 0 in (26). Using the notation in (AS),

d
.= Cie,.

ij= 1.6, (A6)

where summation over repeated indices is implied. The components of the elastic matrix C¥ are given by

Cq, = 4E,/9 (A7a)
Cl;=C4y = =2E\/9 (A7b)
Ct=CY = E\j9+Gy (ATc)
C4y = EA/9—Gr. (A7d)

The explicit form of the deviatoric stress—strain relation in (A6) is the following:

T = Chien + Claler +643)
T = Clie + Chen+ 0y,
Ty = Chaey + Chie + Clatyy

T =2G k. T =266, 1, = 2GA% . (A8)



