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Abstract-Computationally convenient elastic stress-strain relations arc giv.:n for orthotropie and
transverselv isotropic materials in terms of unit vech'rs that are aligned in the preferred material
directions. 'Methods are proposed for determining the material symmetry planes from mechanical
and thermal response. The restrictions on the elastic constants that are diseussed by Jones (1975)
are specialized to the case of transverse isotropy. It is shown that the laminated composite structures
with high in-plane stiffness may easily violate these restrictions. The incompressible version of the
stress-s'train relations are presented for materials that do not deform under hydrostatic loading.
This version applies to composite structures made with incompressible epoxy matrices and stilT
fibers. F,'r incompressible laminated structures the restrictions on the elastic constants are violated
when the in-pl.me modulus £, and the out-of-phme modulus £,\ are govern\.'U by £r > 4£".
Violation of the restrictions may be the cause of the common occurrence of interlaminar shear
I;,ilure and edge delamination. In order to avoid excessive load transfer. it may be beneficial to keep
the fiber matrix Young's moduli in the range E, < :!OEm •

l. INTRODUCTION

The traditional approach for the determination or the stress-strain response of a material
oegins with microstructural ooservations in order to detect the owrall structural symmetry
in the material. Suose4uently, the elastic cvnst;mts or the material are measured along the
macroscopic symmetry planes. The numoer of constants that arc needed to completely
characterize the elastic properties of the material depends on the number of the observed
symmetry planes. Material symmetry axes arc known as the "preferred" directions. or
somdimes <IS the "princip<ll" directions. However. we will reserve the term "principal". for
describing the malerial planes over which shear stresses vanish under specific stress states.
When the clastic stress·-strain response is known in the preferred directions, the otT-axes
response can be dctermined from coordinate transformations, sec Lai I!t al. (1978) or Nye
(1 t,l7t,l).

An <llternative method for describing the olT-axes elastic response is to include unit
vectors that arc att<l<:heo to the preferred material directions in the constitutive (stress­
strain) relationship (Spencer. It)71 ; Boehler, 1979). In this case, the constitutive relationship
still contains the clastic constants that arc measured in the preferred directions; however,
both the stress and the strain are measured in the olT-axes directions, and the need for these
quantities being expressed in the preferred directions is eliminated, which may result in
computational convenience as well as speed. Stress and strain are second order tensorial
4u'lIltities and the directional unit vectors M. !\l and [ are vectors which are first order
tensors. The mathematical form of the relationship between stress. strain and the material
fixed unit vectors M, !\l and [can be derived from the representation theorems for second
order tensors (Hoehler, 1979; Spencer, 1971). These theorems were used by Sutcu and
Krempl (1984) and Suteu (1985) to arrive at transversely isotropic and orthotropic visco­
plastic stress-strain relations.

An inverse problem arises whcn wc do not know thc symmetry planes and the degree
of anisotropy in the test specimen. Theoretically we can measure up to 21 elastic constants
from thc test specimen, however the measured values do not yield direct information
regarding the number of possible symmetry planes. Woven fiber composites that are
reinforced in non-orthogonal directions in three dimensions offer a good example. In this
case. micromechanical models computationally produce 21 overall effective elastic constants
for the structurc (Pagano and Tandon, 1988. 1990). Hut we do not know if these are all
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independent constants or simply the result of an arbitrary rotation from a much simpler
state of anisotropy which requires a lesser number of constants. Sometimes. single crvsta!
materials are modeled as orthotropic or transversely isotropic materiab. ~tlthough thl.:'
actual mechanical response is more complicated. For simple microstructures or wean:
architectures the possible symmetry planes can be determined by intuition. However. a
general method and a related computational algorithm are needed for mure complex
structures.

In this paper. we will approximate the material response by transverse isotropy and
orthotropy and then check the error that results from each case. It is desirabk to appro:-i­
mate a given material response with transverse isotropy (if possible). rather than with
orthotropy. Because the former is characterized with only five elastic constants. whereas
the latter requires nine constants. Elasticity solutions for transversdy isotropic materials
are accordingly simpler than the orthotropic case. However. transverse isotropy is more
restrictive for accurately modeling the material response.

It is well known (Nye. 1979) that a homogeneous material can have three independent
linear thermal expansion coefficients in three mutually orthogonal directions. Thus. raising
the temperature of a test specimen and measuring the uniform thermal strains otfers a
convenient method for determining three mutually orthogonal material directions in which
the material may be orthotropic. The three eigenvalues and the three eigenvectors of the
thermal strain tensor (normalized with respect to the temperature) correspond to the three
independent thermal expansion eoellieients and the three possible preferred directions.
n.:speetivdy.

The second method for determining three mutually orthogonal direetion" i" to rneasun:
the strain tensor umkr uniform hydrostatic pressure. The eigenvalues and the eigenvectors
of the resulting strain tensor can he din:ctly related to Ihe preferred direction" and to the
elastic constants. if the material happens to he orthotropie or possesses a simpler class of
anisotropy. Otherwise. these directions do not correspond to the preferred material direc­
tions. It is not dear how one can use the information gaincd fnlm hydrostatic lllading in a
useful manner in the case of more eomplicated anisotropy. It is possihle that the thermal
cxpansion anisotropy is a simpler class than actual structural syrnmdry. therefore the
method of hydrostatic pressure is more rcliahlc. Alternative methods SUdl as uniaxial
loading arc needed for incompressible clastic materials.

Furthermore. in this paper we show that lhe ctfective dastic constants of laminated
composites may violate the restrictions on the elastic constants. These restrictions are giv..:n
in Jones (1975) for orthotropic elastic constants and ensurc that th..: resulting structure can
deform as a continuum under general loading.

~. ORTlIOTROI'IC STRESS STRAIN REl.ATlON tNIT.RMS OF MATERIAL I'I.\EI> UNIT
VECTORS J\1. N. [

An orthotropic body has three mutually perpendicular planes of mataial symmetry.
The three mutually perpendicular directions. which are the intersections of the symmetry
planes. are called the preferred directions.

In Fig. I we show a material region /)1 with a global coordinate system .\TZ attached
to it. The three muwally orthogonal preferred directions are inclined at an arbitrary
orientation in space. The coordinate system xy: is att~lched to the prefern:d directions. The
region D! in Fig. I is cut from region D I parallel to the preferred directions and mechanically
tested in order to obtain the stress-str~lin relation in the preferred directions. Our aim is to
obtain the stress-strain relation in the global direction X YZ without any coordinate
transformation. For this purpose. we will use the unit veetors M. Nand [ in order to
"remember" the preferred directions in our constitutive relationship.

As shown in Fig. I the unit vectors tVl. Nand [ are attached to the preferred direction
x. y and :, respectively. and given by

~1 = M 1i+M 1.i+M,k

N = .v Ii + .v ,j+ .\');

(I a)

( Ih)
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Fig. I. The material fixed coordinate system XF= and the unit vectors Nt. I'l and [ are aligned along
the preferred directions of the material. The material properties are determined from testing the
subregion 0: which is cut from region 0, parallel to the orthotropy axes. Stress-strain relations
are desired in the global directions XYZ for the region 0,. The material may be transversely

isotfOpie in the .1'= plane.

(Ie)

where th~ unit vectors i. j and k arc in the global coordinate directions X, Y and Z.
respectively. and the quantities MI. ,\-[ ~ and M.I .Ire the direction cosines of the preferred
direction x. The quantities N •• N~, N" L., 1. 2 and 1..1 .Ire similarly defined.

The transformation of the strain tensor (or any second rank tensor) ttl is governed by

1:'1::; 1:'11 M,M, +1;'l~N,N, +/;~I\L,L,+l;'~I(N,LI+L,N,)

+/;'. J(M,L) + L"\;(I) + l:'12(M,N,+ N,M), (2)

where the indices i and j range from I to 3. The quantity t;"" refers to the components of
the strain tensor in the preferred materi'll directions xy=. The strain components in the
global directions XYZ arc denoted by t,} in (2). The inverse relationship to (2) is given by

t:'11 = AfpA-fqf.pq , f.'~2 = NpNqf.pq , I:'JJ = LpLql:pq

1:2J = NpLql:pq• 1:'13 = MpLql:pq , e'12 = MpNqepq , (3)

where summation over repeated indices is implied. The shear strain components e2l> e13
and 1:12 in (2) and (3) are one half of their corresponding engineering shear strain com­
ponents Yn. YIJ and Yl2 respectively. Equations (2) and (3) are useful for determining the
preferred material directions from mechanical test data. as shown later.

2.1. Preferred directions
The stress-strain relations in the preferred directions xy= have the following form

(Lekhnitskii, 1981)

£, = i!.. -'X.(T- T,) = «(1,-v,.•.(1y-v,,(1JIE.

<-... = e•. -'X,.(T- T,) = «(1.,. - v... ,(1., - V...: (1JIE,.

<-: = i!: - 'X:(T - T,) = «(1: - \':.. (1.. - V:y(1.•. )IE,

(3a)

(3b)

(3c)

(3d)

The total strains are denoted by e'i' whereas <-ij excludes thermal strains. The definition of
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the elastic constants £,. £,., £:, G,.:, G e • G n • V,.:, V:,. V,:. V". I'n. v" can be obtained from
Jones (1975), Lekhnitskii (1981) or more recently from Buczek (1986). The relationships
between the Poisson's ratios and the restrictions on the values which the elastic constants
can take are given in Jones (1975).

An orthotropic material has three independent linear thermal expansion coefficients
:x" :x, and 1: in the three principal directions. The rectangular prism Dc in Fig. I which is
aligned in the preferred directions remains rectangular upon temperature variation.
However. the region D I in the global directions xrz deforms in shear as well because of
the off-axis thermal strains.

The relationships in (3a)-(3c) can be inverted to obtain the stresses (J" in terms of the
mechanical strains £"

(4a)

Hb)

Hc)

The elastic constants c" are related to the engineering elastic constants £,. E, and so forth
in Jones (1975).

2.2. Iflcompr(',I',I'ih/(' ortlwtropic ,I'tr(',I',I',I'traifl rt'iatioflslti/J

An elasticity theory was developed for libel' composites by Mulhern ('t al. (1%7),

Everstine and Pipkin (197J) and Spencer (1974) among others. in which the lihers werc
approximated hy rigid inextensihle cords and the matrix was assumed to be incompressible.
For this reason, it is worthwhile to give the incompressible versions of the orthotropic
stress strain relationships in (3'1) (4c). It can he shown that the trace of the strain tensor
I:" vanishes identically when the Poisson's ratios arc given by

(Sa)

(5h)

(5c)

Thus, an incompressihle clastic material possesses six constants, rather than nine. The
resulting stress-strain law is again governed by (3a) -(3c) with the Poisson's ratios calculated
from (5a)-(5c).

For the incompressible deformations, the inverse of (3'1) -(31:) docs not exist. bel:ause
the hydrostatic stress cannot cause deformation. In physil:al terms. this may be interpreted
as an indication that the material prefers failing by fracture under hydrostatic loading rather
than deforming as a continuum.

There is an inverse relationship between the stresses and the strains if we subtract the
hydrostatic stress from the stress tensor (J". The resulting stress denoted by T" is called the
deviatoric stress,

T
"

= (J" -(Jur5,,/3.

where the unity tensor, Kronecker delta ('i,) is delined by

1 ifi =j.
,)" = o otherwise'

(6)

Using (5a)-(6) in (3a)-(3c) and (4a)-(4c) we obtain the following deviatoric orthotropic
stress-strain relation:



Orthotropic and transversely isotropic stress-strain relations

!x:;: C1Iex+C1~ey+C13e:

!. :;: ci ~ex + C~~ey + C~3e:

!: :;: ci3ex +C~Jey+ C~Je:.

The deviatoric elastic constants in (7a)-(7c) are given by

Cil = {4Et /E.+4E.lE:-2)D

C~~ :;: (4E../E:-2E..JE.+4)D

C1J:;: (4Et /E..-2Ex /E:+4)D

C~J = (E../E.+E:.JE:-5)D

ciJ:;: (E.JE:-5E.JE,.+ I)D

Ci2 = {Et /Ey -5E.t /E:+ I)D

D = (2Et /9)/[4Et /E.-(E.JE.-Et /E:+ 1)2),

The shear stresses !y:' t" and tty are unaffected and are still governed by (3d).
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(7a)

(7b)

(7c)

(Sa)

(Sb)

(Sc)

(Sd)

(8e)

(Sf)

(8g)

2.3. Restrictions on tlze elastic constants
The restrictions on the orthotropic elastic constants are given in Jones (1975). Applying

the same requirements as in Jones (1975). we derive the following equivalent restrictions
for the incompressible case:

D~O

{I +EJEt -E)./E,)2 < 4EJE.t

{I +E:lEt -E:/Ey )2 < 4E:!Et

(I +E:/Ey -E:/Et )2 < 4E:/E~.

(9a)

(9b)

(9c)

(9d)

The four constraint equations in (9a)-(9d) are not all independent. It can be shown that
the restrictions in (9a)-(9d) are satisfied by

(10)

The restriction in (10) may have important consequences for laminated fiber-reinforced
composites, especially those made of high modulus fibers in nearly incompressible rubber­
like matrices. Let us imagine that the x-axis is aligned perpendicular to the plane of the
laminate. Then, the Young's modulus Et of the resulting composite is essentially the same
as that of the matrix, whereas the in-plane moduli Ey and E: have high values because of
the fibers. This structural arrangement can easily violate the restriction in (IO) and thus
restrict certain classes of deformations in the composite.

It should be noted that the above restriction in (10) may have some implications for
incompressible plastic deformations of metals as well. When the effective plastic moduli do
not satisfy the restriction in (IO) volume preserving plastic flow may become restricted,
which may lead to brittle fracture or damage.

2.4. Arbitrary directions
The tensorial representation theorems (Spencer, 1971) are used to derive the stress­

strain relation in the global directions XYZ (Fig. I). Mathematical representations for one
tensor eij and three unit vectors M i , N, and L i are used by Boehler (1979) in order to
derive transversely isotropic and orthotropic constitutive relations. We derive an equivalent
orthotropic relation that has some advantage in representing the shear terms in comparison
with Boehler (1979), using the same mathematical techniques [see Sutcu (1985)J. The
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accuracy of the presented expression can be checked easily. using coordinate trans­
formations described in (2) and (3) :

(Jij = mpqepq(Cllmij+ Cl~nij+CI3/ij)+npq£pq(CI~mij+ C~~n'l +C~JliJ

+ Ipq£pq(C IJm,j +C 2J n'J +CHI,) + 2CH(n,pljq +nJpl,q)epq

+2C5S(mip l;q +mJp/,q}f.pq +2C66 (m,pn;q +mJpniq)epq. (II)

where the tensors m,1' n" and Ii; are calculated from

mpq = iUpl\1q

npq = NpNq

""I = LpLq.

(12a)

(12b)

( 12c)

The quantities mpq • npq' Ipq will be called geometric tensors. The elastic constants C" in (II)
were defined in (4a)-(4c). The stresses (Jij and the strains eij in (II) are in the global directions
XYZ (Fig. I). The stresses (J;; and the str;'lins e;j in the preferred directions xy: can be
obtained using the tensorial transformation expressions in (3). A fourth order tensorial
representation related to (II) is defined in the appendix.

For incompressible materials. the deviatoric form of the stress-strain relation in (II)
is obtained by replacing

The inverse of ( II ) is

+ II',/(Jp,/(S 13mij+Snfl,j +S331;;) + (SH/2)(n".Ij t' +njpl",)(Jp,/

+ (S55/2)(m,pl;q +m,i,q)(J"q + (S6l,/2)(n1",nN +m1I'fliq)(Jpq. (14)

The elastic constants SI" S11, S13. S11, S13•... , S66 in (14) are defined in terms of the
engineering constants En Ey • and so forth in Jones (1975) (see 2.23). The incompressible
version of (14) is obtained by using the incompressible values for the Poisson's ratio v:y •

V:x , vyx provided by (5a)-(5c).

2.5. Orthotropic thermal expansion coefficients in arbitrary directions
An orthotropic material may have three unequal thermal expansion coefficients~n~".

IX: in the preferred directions. as discussed in Section 2.1. If these values are unequal, then
the block D 1 in Fig. I may undergo shear deformation as a result of temperature change.
because it is aligned in the off-axis directions of the material. The edges of the deformed
block that were initially aligned along the X and Y axes now make an angle other than nl2
as a result of the temperature change. The difference between the new angle and n/2 for
one degree temperature change. when expressed in radians. defines the shear thermal
expansion coefficient 2~11' Similarly. we can define 2713 and 2713 in the global XZ and YZ
directions. respectively. Including the three normal thermal expansion coefficients IXII. CC11
and C(33 in the global X. Yand Z directions. respectively. there are six thermal expansion
coefficients. The factor two is introduced in the shear terms because these six constants
form the components of a second order tensor C(i;' Thus, the relationship between the six
off-axis thermal expansions IX I I. C(~1' CX)). C(H. IX13' CCl1 and the three principal thermal
expansion coefficients IX.,. C(Y' IX: is governed by the tensorial transformation law in (2)
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or e:<plicitly

:tIl = :t,A!i+:t"Ni+:x:Li

:t~~ = :t,M~+:t,N~+:x:L~

, , L'
:t J J = :t, i"f j + :x...N j +:t: j

:t~J = :t,;\f~!'.fJ+:tyN~NJ+:t:L2LJ

:tIJ = :t,Af\)\fJ+:t"NINJ+a.:L\LJ

The inverse relationship can be easily obtained using (3).

), TRANSVERSE ISOTROPY
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(15)

(16a)

(16b)

(I6c)

(I6d)

(16e)

(160

If at every point of a material there is one plane in which the properties are equal in
all directions. then the material is termed transversely isotropic. A transversely isotropic
material is characterized with only one preferred direction. The transversely isotropic stress­
strain relationship in arbitrary directions is developed in a similar manner to the orthotropic
case. We derive the stress~strain relation for region D 1 in Fig. I with built-in coordinatt:
transformations. The material properties arc obtained from testing region D 2• which is
aligned along the preferred direction. The material is isotropic in the y:-plane in Fig. I.
Similar to the unit vectors ~t. N. [ in (la)·(lc). which arc attached to the principal
directions or orthotropy. we attach a single unit vector 1\1 along the axis of anisotropy in
the x-direction. This unit vector is used to "remember" the preferred direction of the
transverse isotropy.

The other two unit vectors Nand [ given by (I b) and (k) can be chosen arbitrarily
because these two directions lie in the plane of isotropy. For convenience, we choose one
of the unit vectors N in the global YZ plane in Fig. I. The third unit vector [ is obtained
by taking the vectorial cross product of 1\1 and N:

N = (M J j-M 2k)/Q

[= (-Q 2i+M,M2j+M 1M Jk)/Q

Q = (M~+Mi)'/2. (17)

In the special case when the principal direction x is aligned in the global X direction, (i.e.
M 2 = M J = 0). then the vectors Nand [ are given by N = j, [ = k.

The stress-strain relationship given below is the linear part of the more general
expression given by Boehler (1979) :

In comparison with the nine e1~lstic constants of an orthotropic material, a transversely
isotropic material possesses five constants. Incompressible transversely isotropic materials
arc characterized by three clastic constants.

The geometric tensor m,/ is constructed using the components of the preferred direction
vector M, as given by (12'1). The stress U'i and the mechanical strain E;jj in (18) are defined
in the global coordinate system XYZ (Fig. I). The stresses U;j and the strains E;;i in the
preferred directions can be obtained using the coordinate transformation defined in (3).
The newly defined elastic constants C 1, C 2, C J , C4 , C s in (18) are related to the more
familiar engineering elastic constants as follows:
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C j ::: k-G r = C 2 }

C: ::: (2\'., -llk+Gr = C t2 - C21

C ::: E, +(2\'~ -lfk-4G-\ +G r = CII +C;: -2C"-4C",,

C~ = 2G r = C:::-C:.,

C=lG,-2G r =2C"" C::+C 2J .

(1I.)a)

(1%)

( 1ge)

( 19d)

(lge)

The definition of the elastic constants on the right hand side of eqns (19aH 1ge) is given
in the Appendi:<..

The inverse 01'(18) is given by

where the newly defined elastic constants S" S,-, S" SJ' S5 arc given by

SI = vT/Er S1.1

S2 = \'r/Er-v"IEt\ = SI2-S:J

51::::: I/EA +I/Er+2\',\'E,,-I/G..\ =SI1+S::-2SI:-S""

SJ =::: (I +\',rE, = 1/(2G,) = S::-S2J

S, ::::: (I/G.\ -1/Gdi2 == S",,/2 -S;; +S;,.

(2Ia)

(2Ib)

(21c)

(21d)

( 'lie)

The definition of the commonly uscd elastic constants SII' S::. and so forth is given in
Christensen ( In9).

The notation in ( (9) and (21) is chosen to correspond to

(22)

in comparison with the orthotropic case.

3.1. Restrictio/ls 0/1 tlte elastic cOflstallls and the im'ol1lpres.l'ih/t' Pm:\'so/l \. ratios
The restrictions on tht: values that tht: elastic constants can take art: obtained in a

similar way to Jont:s (1975). Tht:se restrictions basically ensure that applkd load product:s
deformati()n in tht: load dirt:etion, and the clastic stored t:nergy in the mataial is positive
for all possible ddormations. Specializing the expressions in Jones (1975) for transverse
isotropy. we obtain

E..\, E,. GA , G, > ()

1< \', < I

\'~ ~ (l-vdEA /(2Ed.

(23a)

(23h)

(23c)

When the Poisson's ratios arc governed by the following relations, the material behavior is
incompressible

\'.•, I ")
!- (24a)

(.24h)

By inserting the incompressible value of \'T from (24b) into the lower limit in (23b), we
arrive at the conclusion that incompressible deformations cannot occur in transversely
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isotropic materials where the axial direction x is softer than the transverse plane y= and the
ratio of the moduli is such that the following condition is violated:

£1' < 4£A' (25)

This restriction is the transversely isotropic version of the orthotropic restriction given by
(10).

3.2. Incompressible stress-strain relationship
The incompressible version of the transversely isotropic stress-strain law in (20) is

obtained by calculating SIt S:. SJ. S4. Ss from (2Ia)-(2Ie) while replacing the Poisson's
ratios l'A and VI' on the right-hand side with the incompressible values provided by (2441) and
(24b). The resulting expression does not produce defonnation under hydrostatic loading.

The incompressible version of the stress-strain law in (18) can only be defined between
the deviatoric stress tij defined in (6) and the strain e'l" The shear components of the
deviatoric stress t'l are identical to the corresponding stress components (Tij'

(26)

The elastic constants C;'. i = I. 5 are not all independent and are expressed in tenns of the
three independent clastic constants EA. GA41nd Gr (or £d as follows:

C~ = £A/9-Gr

C'~ = G r - EA /3

Ci = EA +Gr -4G/\

C'~ = 2G r = 2£1'/(4- Er/EA )

C'~ = 2GA -2GI"'

(2741)

(27b)

(27c)

(27d)

(27e)

The deviatoric relationship in (26) is similar to (18) except the constants Ci in (19a)-( 1ge)
an: replaced with C;' in (27a)-(27e). The bulk strain t:kk in (26) is zao for incompressible
deformations. This term is retained in order to maintain the symmetry of the fourth order
tensor of elastic constants. The tensorial relationship in (26) is given in matrix form in the
Appendix. It should be noted that the in-plane shear modulus Grin (27d) becomes negative
when the restriction in (25) is violated.

3.3. Thermal expansion coefficients in arbitrary directions
Similar to the orthotropic case discussed in Section 2.5. a transversely isotropic material

m41Y also deform in shear in the otT-41xis directions under temperature variation. The six
olT-41xis thermal expansion coellicients IX II. IX::. IX)]. IX13. IX I J, IX 12 arc related to the two
principal thermal expansion coellicients IXA and IXI' (see (22»,

or explicitly

!XII =IXr+Mr(IXA-IXT)

<222 = <21' + M~(!X/\ -!XI')

!XH = !XT+Mj(!X/\-<2T)

!X2J = M 2M J(!XA -<21')

!Xll = M,,\JJ(XA -<21')

(28)

(2941)

(29b)

(29c)

(29d)

(2ge)
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The subscripts I. 2. -' in (2':1a) (290 indicate the global coordinate a,es X. r. Z respecti\t:ly.
ddined in the otf-a,is directions (Fig. I).

J. DHER\!l'\\TIO:\ OF THE PREFERRED MATERIAL DIRECTIO:\S

Conceptual or actual experiments can be devised in order to determine the material
sy mllletry planes. The unknowns are the direction cosines of the material-fixed unit vectors
.\/, ..\ and L, which were used in the previous sections in order to "remember" the preferred
directions. Perhaps. the easiest test is to subject the material with unknown properties to a
tempaature change. Shear distortion upon uniform heating is a good indication that the
material is anisotropic and that the test specimen is aligned in the off-axes directions. Shear
deforInatiolh under unia.'\ial or biaxial normal loading can be interpreted in a similar
manner. As discussed pn.:viously. applying hydrostatic pressure offers a convenient method
1\)1' dell:rlllining the m;lterial symmetry planes. if the material is orthotropie.

4.1. TCfl/perature elwlU/c ill all ortllOtropic materia!

The orth\ltropic bh'l'k [)I in Fig. l. upon heating, undergoes length ehanges along its
edgl's and angle changes between the edges. so that the corners are no longer at right angles.
The pl'rcent;lge length changes along the three mutually orthogonal edges are given by the
normal strain e\ll11ponents /: 11. I::~ and I:". The angle changes. when expn.:ssed in radians
and divided by 2. arc represented by the shear strain components 1:2" /: 1 1 and 1: 1> Thc si\
strain cllmpllnenls arc divided by the temperature variation AT. in order to arrive at the
six thermal C\pansillnl·oellicienls. XII. X::- x". Xc" XI I. XI>

Thl' rl"!;ltionship between the si, air-axes thermal expansion codlicients x" and the
threL' preklTL'd therrn;i1 expansion codlil.:ients l,. :,(, and x, is given in (15) (I()f). In
m;lthell1;lttl·;t! terms, the detcrmination of thl' prekrrl'd directions is an eigenvalue problem.
whH:h call he delllonstrated easily by taking the inner product ofx'i in (15) with the unit
vector .\1,.

x" ;\1, = X \. AI, (30a)

(JOb)

(JOe)

using the orthogonality conditions on thl' unit vectors. Thus, the three preferred thermal
expansion codlieients ;(" l" X: are the eigenvalues of the thermal expansion tensor X,/. and
the nine direction cosines M I , lv1 1 • LVI" N 1 , N 1 , N], L h L~, L J are the direction cosines of
the three mutually orthogonal eigenvectors of 'Xij • If two of the eigenvalues arc equal to one
another, then the material is transversely isotropic as far as the thermal expansion behavior
is considered. The actual mechanical anisotropy may be more complicated. The method of
hydrostatic pressure provides a more reliable method and is discussed next.

4.2. llydro,l'lillic pressure

If the material is orthotropic and compressible. then the preferred directions of the
material coincide with the eigl'nvectors of the strain tensor f:", which is produced under
hydrostatic pressure. a" = P')'I' The term P denotes the hydrostatic pressure. and ()" is the
Kronecker della deli ned aftl'r (6). The strain response 1:" is calculated from (14).

Furthermore. thl' eigemalues of the strain tensor f.'1 provide some information abollt the
clastic constants. The inner product of the strain tensor I:" in (31) with the unit vectors M"
.v, and L prnduces the eigenvalues in terms of the elastic constants:
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e,/~fj = 1\,[.(SII +SI~+SIJ)P = i_ 1M,

e,/vj = N,(SZZ+SIZ+SZ3)P = i·zN,

ei}Lj = L,(S33+SI3+SZ3)P = i.IL,.
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(32a)

(32b)

(321.:)

The eigenvalues are denoted by i_I' ).~ and ;'3' If two of the eigenvalues are equal then the
material may be transversely isotropic. Note that the shear moduli do not appear in (32a)­
(32c). It is also worthwhile to mention that a mathematical analogy exists between the
method of hydrostatic pressure and the method of uniform heating. This analogy can be
seen by comparing the eigenvalues predicted in (30a)-(30c) and (32a)-(32c).

Determining the eigenvectors of the strain tensor under hydrostatic pressure. con­
veniently filters out most of the unknown elastic constants so that the preferred directions
are derived easily. Alternatively. one can use direct algebraic methods by considering six
independent equations that are derived from (14) under hydrostatic pressure. The algebraic
solutions for orthotropy are quite lengthy because of the non-linear coupling of the unknown
terms. However. the particular equations that are derived for transwrse isotropy from (20)
are manageable.

Let us assume that six strain components have been measured under hydrostatic
pressure in a transversely isotropic material and we wish to determine the three direction
cosines MI' M; and M 3 of the preferred direction from this information. Setting (1" = 1'1)"

in the transversely isotropic stress--strain law in (20) shows that there arc five unknowns
the three direction cosines 1'Yf I. AI;. ,'Yf,1 and two combination clastic c,mstants (3S 1+ :·;z + S~)

and OS;+SI+2S j ). Six components of the stmins in (20) and the unit magnitude
condition on the unit vector M provide seven equations for the II\e unknowns. Thus. two
of the measured strain components under hydrostatic loading arc dependent (In the other
measured strain components. if the material is truly transversely iSlJtropic:

rna)

(330)

With these constraints. the number of equations is reduced to the number of the unknowns.
Equations (33a) and (33b) make it possible to check for transverse isotropy ulllkr hydro­
static pressure without the need to solve an eigenvalue probkm.

Let us assume that we wish to determine an approximate plane of transverse isotropy
for a material that does not satisfy (33a) and (33b). Since the actual material behavior is
not transversely isotropic, the two equations in (33) represent the error in the approxi­
mation. We must ensure that the stiffest and the softest directions arc included in the
analysis. We may underestimate the real anisotropy if we ignore either the stillest or the
softest materi.t1 directions and consider the intermediate or "in-between" stitl' directions.
For this purpose. it is advantageous to choose the global X YZ coordinate system such that
the X and Z axes arc aligned in the stitf and in the soft directions of the m.llerial respectively.
The stiff and the soft directions of a material can be determined by applying hydrostatic
pressure and measuring strains. The maximum ,md minimum normal strains correspond
to the soft and the stiff directions respectively.

The global coordinate system XYZ in Fig. I is chosen so that the normal strain
components are ordered in the following manner; lelll < led < 1<:331 under hydrostatic
pressure. This choice ensures that the stiff material direction lies close to the X direction.
whereas the more compliant direction is close to the Z direction. When the stiff direction
lies in the plane of isotropy, the shear strain components are ordered such that
lenl > le131 > lel;1 under hydrostatic loading. On the other hand, if the out-of-plane
direction is stiffer, then the shear strains are governed by Ie; 31 < If-I_I i < Ie I; I. provided that
the material is indeed transversely isotropic. If the shear strains under hydrostatic loading
are not ordered as such, then the material has a more complicated symmetry class than
transverse isotropy. In order to emphasize the stiff and the soft directions and ignore the
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intermediary directions. the two e:<tra equations that contaIn I;:: and r: I' on the kft hand
sid~ in (20) will be dropped in the approximation.

~.3. L'Iliaxia! loadil19
\Ve introduce th~ method of the uniaxial loading primarily for materials that do not

deform under hydrostatic stress. The method will be discussed for compressible materials.
and subsequently will be specialized for incompressible materials. Our purpose is to deter­
mine the approximate symmetry planes in a given material so that the stress-strain response
is approximated by orthotropy or transverse isotropy. The global coordinate system xrz
in Fig. I is chosen such that the stiff material direction lies close to the X direction. whereas
the compliant direction is close to the Z direction. This choice is accomplished by applying
unit unia:<ial stress in three mutually orthogonal directions and subsequently labeling the
directions with.\'. r. Z slH:h that the normal strain wmponents in the applied load directions
arc ordered in the following manner: 11';1 d < 11':::1 < 111.

4.3.1. Ort!tolrlll'l'. Three uniaxial loadings are needed to completely characterize the
state oforthotropy in a material. These three uniaxial loadings can be in arbitrary directions:
however. they cannot lie in a single plane. The uniaxial loadings in the proposed method
are always chosen in the global.\'. rand Z directions. From these three tests. 15 independent
strain components an: measured. Using these measured values. 15 equations arc generated
fl'\)fl1 the orthotropic stress strain relation in (14) for solving the following 18 unknowns:

(J~)

Additional six equations arc provided by the conditions on the unit vectors ~l. Nand i
and given hclow'

Mi' +Mi+M~ = N;+Ni+N~ = l.;+Li+/,~ =

AIIN I +M:N:+AI,.V, 0

JIIL I +JI:L:+M,L, 0

NIL I +N:L:+N,L, = o. (35)

Thus. the IXunknowns in (34) arc overly constrained by 11 equations that result from three
uniaxial loadings. If the material behavior is orthotropic. then the extra three equations arc
identil.:tdly satisfied; otherwise, they represent error. In order to ensure that the error Ol.:l.:urs
in the intermediary direl.:tion. rather than in the still' or the soft directions. we choose the
following three equations to represent the error; the equations that I.:orrespond to (i) the
normal strain 1::: in (14) when the uniaxial load is applied in the direction Y, (ii) the shear
strain /:1' in (l~) when the uniaxial load is applied in the direl.:tion X and (iii) the shear
strain 1:11 in (l~) when the uniaxial load is applied in the direl.:tion Z. Dropping these three
equations. the numher of unknowns matches the number of equations. and a solution is
possible.

It is possihlc that the material symmetry class is simpler than onhotropy. In this case
the solution of the above equations is not unique and the extra equtltions that represent
error arc satisfied identil:ally. If this is the I.:ase. then one should investigate the possibility
of transverse isotropy.

The above-mentioned method is applicable to incompressihle materials as welL Incom­
pressibility can be detel.:ted by summing the three measured normal strain I.:omponents
from eal.:h uniaxial test. If all three summations produce netirly zero. then the material is
incompressible. Since the normal strain components are related. the three uniaxial tests
produl.:e 12 rather than 15 independent equations for incompressible materials. The number
of unknown clastic constants is six rather than nine. Thus. we again have three extra
equations that represent error.
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4.3.~. Transrerse isotropy. Two uniaxial loadings are needed to completely characterize
a transversely isotropic material. They can be in arbitrary directions so long as they do not
coincide. The uniaxial loadings in this paper are always chosen in the stiff and in the soft
X and Z directions. From these two tests. II independent strain components are measured.
Using these measured values. II equations are generated from the transversely isotropic
stress-strain relation in (:!O)-{2Ie) for solving the following seven unknowns:

(36)

The third component M ~ of the unit vector ~ is related to M t and 1',,/: in (35). Unlike the
hydrostatic loading. all five elastic constants are included in the stress-strain relation (20).
The sewn unknowns in (36) are overly constrained by II equations. If the material behavior
is truly transversely isotropic. then the extra four equations are identically satisfied: other­
wise. they represent error. In order to ensure that the error occurs in the intermediary
direction. rather than in the stiff or the soft directions. we disregard the four equations that
contain [.2: and 1:, ~ on the left hand side in (20). Dropping these four equations. the number
of seven unknowns matches the number of seven equations. and a solution is possible.

If the solution to the equations in (20) is not unique. then the material is isotropic.
The above-mentioned method is applicable to incompressible materials as well. For incom­
pressible materials. two uniaxial tests produce nine rather than II independent equations.
and the number of unknown clastic constants is three rather than five. Thus. we again have
four extra equations that represent error.

5. DISCUSSION AND SUMMARY

Elastic stress -strain rehttions in arbitrary material directions arc presented for trans­
verscly isotropic and orthotropic materials. The relations given by ( II). ( 14). ( 15). (Il{) and
(20) arc expressed in terms of the elastic constants that arc measured .dong the preferred
malerial directions and thn.:e unit vectors ~. N' and [in order to "remember" the preferred
directions. The need for rotating the stress and the strain tensors into the preferred directions
is climinaled because the preferred directions arc built into the stress··strain relations. In
the case of transverse isotropy we only need to "remember" the din:ction perpendicular to
the plane of isolropy.

Incorporating material-attached unit vectors into the stress-strain relationship makes it
possible to usc tensor algebra for determining the symmetry properties from the mechunical
response of the material under load. The unknowns are simply the direction cosines of the
unit muterial vectors. We can than systematically reduce the 21 elastic constants to simpler
symml..'try subclasses shown on pages 296-301 in Nye (1979). A computational ulgorithm
is needed for this purpose; however, this will be done elsewhere.

The special case when the muterial is incompressible is treated by providing deviatoric
orthotropic and transversely isotropic stress-strain relations (sec (7u)-{8g). (13) and (26)­
(27e». The deviatoric stress excludes the hydrostatic pressure in the material. The strains
arc such that the material volume remains unchanged during deformation. The deviatoric
conslitutive relationships arc useful for certain composite materials which arc treated as
incompressible matrices reinforced with inextensible cords [see Mulhern et al. (1967):
Everstinc and Pipkin (1973); Spencer (l974)}. It should be noted that an incompressible
material can h.1VC a maximum of 15 anisotropic elastic constants in comparison with the
21 clastic constants of a general anisotropic body.

The restrictions on the orthotropic clastic constants in Jones (1975) have been extended
to incompressible deformations and to the case of transverse isotropy. When the elastic
constants violate these restrictions. an inhomogeneous material cannot effectively deform
as an equivalent homogeneous medium under all loading situations. Some deformation
modes will be constrained. and large stress concentrations may result at the interface of the
constituents when a restricted class of deformation is activated by the applied load. This
will cause localized deformation. such as plastic flow. damage or fracture. in order to
accommodate the applied load. An example of this phen!Jmena. is the common occurrence
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of interlaminar shear failure in laminated composites. The restrictitlns given by (IOj anti
(25) for incompressible materials become important for laminated composite structur::s
where the out-or-plane effective elastic modulus is smaller than the in-plane stiffness. Such
will be the case when the fibers are much stiffer than the matrix. The general restriction"
gi\en by C~b)-(::!}c) for transverse isotropy. and for orthotropy by Jones (1975). arc
probably t'ommonly violated for these laminated composites. It can be shown that the
restricted class of deformations for laminated composites include the in-plane shear and
the out-or-plane normal loading. Perhaps. one reason for the success of the laminated
composites is the fact that the edges of the compo'iite are usually constrained in such a
manner as to produce even strain distribution in all layers and thus preventing edge
delamination and interlaminar shear failure. Another reason may be the ability of the
matrix to deform non-linearly.

Similar arguments can be made about the elastic energv content of the bodv. When.... ""' ... ~

the restrictions on the elastic constants are violated, the structure cannot contain elastic
energy as an equivalent homogeneous medium. All of the energy input into the material is
consumed by increasing the stress concentrations at singular locations rather than by
volume deformation in the body.

Laminated structures using brittle fiber and matrix combinations may present inter­
esting challenges in terms or preventing interlaminar shear failure. Let us assume that enough
number symmetric layups arc stacked sO that the in-plane response is nearly isotropic.
Equation (25) indicates that edge delamination or interlaminar shear f:lilure will bea
problem if the composite is nearly incompressible and the matrix and the fiber Young's
l110duli arc such that 1:", > 4E,. Using Christensen's c1Tective shear nllH.lulus fllr the elll11­
pllsite, it can he shown that Er > 4EA when the fiber and matrix )'oung's l110duli art~

gllvlTned by I:'f > .13AI-.'",. Ef > 26.3/:'", or I:'r> 17.91:'", for the matrix I'lliSS(lll'S ratios Ill'
0.49. OA5 and 0 respectively. The liber volume fraction is taken to be OA5. The above values
arc caleulated by assuming perfect interface bonding and liber spacing, Processing flaws
and uneven fiber spal'ing may reduce the out-of-plane modulus 1-.', cllnsidaably lowl:r
than the calculated values. Experimental measurements of the out-of-plane modulus fill'
laminated composites is needed. For wown tiber composites. we suggest adding libel'S in
the soft composite direction until the ctl"ective Young's moduli of the resulting composite
satislies the orthotropic restriction in (10). although this relationship was derived for
incompressible deformations.

Uniform heating (without microstructural change) and hydrostatic loading provide
considerable information about the symmetry planes of a material. In hoth cases. the
eigenvectors of the resulting strain tensor directly coincide with the preferred directions of
the material. The method of hydrostatic stress is applicable only if the material is COI11­

pressible. For incompressible materials the method of uniform heating can be used;
however, we can determine only thermal expansion anisotropy from this method. Therm:tl
expansion anisotropy is generally a simpler symmetry class than the actual mechanical
anisotropy. The direction cosines AI" N, and L, are treated as unknowns for the deta­
mination of the approximate symmetry planes in the material. When the material is approxi­
mated as an orthotropic medium, three preferred directions arc calculated. whereas only
one preferred direction is calculated in order to approximate the material behavior as
transversely isotropic.

Approximate material symmetry planes can also be determined from uniaxial loadings.
Three uniaxial loadings arc needed for characterizing the state of orthotropy. whereas two
arc needed for transverse isotropy. Approximations are carried out so as to include the
stifTest and the softest material directions.

The stiffest material direction in uniaxial loading may not coincide with the stiffest
direction under hydrostatic pressure for some classes oflaminated or woven fiber composites
and in some single crystal materials. In structural applications. it is desirable to choose the
main load bearing direction in the stiff direction obtained under hydrostatic loading in
order to minimize shear distortions. Thermal shear distortions arc also minimized with
the ahovc choice of the loading directions. becausc the principal strain directions under
hydrostatic loading coincide with the principal thermal strain directions.
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APPENDIX

A I. R,·pre.V<·1Itati(II/ 0/ the' elt:stit' /ourtl, order tensor for ort/wtmpie fIIateriair
The orthotrnpie elastic constitutive rcl:ltionship in (II) can be expressed in terms of a fourth order tensor.

(AI)

The fourth order elastic tensor C,j,., is expressed in terms of the orthotropic elastic constants C11. C11. and so
forth :lI1d the geometric tensors m,/. n,/ and 1,/ that are delint:d in (12a)-{ 12e) as follows:

Cit.. = 1II..(C I ,fII'j +C'ln'j + CIJI,,)+1I,.,(C ll fll'j +C11n" +C2j/,j) +1..(C"fII,,+ Cll"'! +Cll/,/)

+ 2C••(n"l", + ",,1,.) + 2Cs,(m,pl,. + fII,pl,.) + 2C••(m"nN +lIIjpn,.). (A2)

A similar fourth order tensor S",., can be defined for the inverse relationship (14). The factor 2 in the last three
terms in (A2) is replaced by (1/2) for this purpose.

A2. Tran.m:rsely isotropic str('ss-strain relation in the pre/erred direction
The transversely isotropic constitutive relationship is commonly given in the preferred directions of the

material [sce. for example. Christensen (1979». When the preferred dirt:ction v,,'Ctor ~ is aligned along the global
X axis. i.e. M I = I. M 1 = M J = O. the general relationship given in (18) reduces to

a.. = C II£. + C'l(£, +£,)

(1 .. = C'I£.+C11£,+ClJ£,

(1" = Cll£.+ClJe,+C11f.,

(1" = (C::-Cv)e" = 2GT e"

a" "" 2Cu f."

a.. "" 2Cu e.,.

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

The five elastic constants C, h etc., (Christensen, 1979) are related to the engineering constants [see Lekhnitskii
(1981); Hashin (1979)]:

CII = E+4kv~. CIl =2v"k

C:: = k+GT • CIJ = k-GT • Cu = G".

The transverse bulk modulus k is given by [see Hashin (1979)/:

$AS Z9:4·H

(A4)
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A3. The matrix jorm oj the incompressible transversely isotropic relationship in (26)
The stres5'-strain relations are commonly expressed in matrix form [see Jones (1975) or Christensen (1979) I.

For this purpose the components of stress and strain are stored in 6 x I vectors as follows:

't l = rib t: = 't22. t J = tn. t. = t ZJ • t s = til' t{t = Tn

£1 = Ell. £~ = £22. f. J = E JJ • £ .. = 2£:,. £5 = 2E I J' £6 = 2£,:_ (A5)

The matrix form for (26) is given in the preferred directions only. For this purpose, we set m" = I. and all other
m'l = 0 in (26). Using the notation in (AS),

where summation over repeated indices is implied. The components of the elastic matrix C~ are given by

C1, = 4£A/9

C1, = C1J = -2£,/9

C~l = C~J = £A/9+GT

C~.1 = £A/9-GT ·

The ellplicit form of the deviatoric stress-strain relation in (A6) is the following:

tIl = cf,£" +Cfl(r.,,+r.J.\)

t n = C'f 1r." +C~,r.l'+C'~'f..\

t J.\ = C11r." + Cl,f. n + C'~":,,

t,. = 2G rr.". tIl = 2G"r.,,, t" = 2G"r.".

(A6)

(A7a)

(A7b)

(A7c)

(A7d)

(AS)


